Express w as a linear combination of the vector V1 and V2 if this is possible. If not, Show that it is impossible.

w= [3]
[-1]
[2]

v1= [-3]
[1]
[2]

v2= [6]
[-2]
[3]

Respuesta :

Answer:

Step-by-step explanation:

[tex]w=(\frac{1}{7}).V_{1}+(\frac{4}{7}).V_{2}[/tex]

We have the following vectors :

[tex]w=\left[\begin{array}{c}3&-1&2\end{array}\right][/tex]

[tex]V_{1}=\left[\begin{array}{c}-3&1&2\end{array}\right][/tex]

[tex]V_{2}=\left[\begin{array}{c}6&-2&3\end{array}\right][/tex]

In order to express [tex]w[/tex] as a linear combination of the vectors [tex]V_{1}[/tex] and [tex]V_{2}[/tex], we will search for [tex]a,b[/tex] ∈ IR such that :

[tex]a.V_{1}+b.V_{2}=w[/tex]      (I)

Now we are going to work matrixically with the equation (I) :

[tex]a\left[\begin{array}{c}-3&1&2\end{array}\right]+b\left[\begin{array}{c}6&-2&3\end{array}\right]=\left[\begin{array}{c}3&-1&2\end{array}\right][/tex]

Distributing mathematically and matching ''component to component'' we lead to the following equations :

[tex]-3a+6b=3\\a-2b=-1\\2a+3b=2[/tex]

Working with the system associated matrix :

[tex]\left[\begin{array}{ccc}-3&6&3\\1&-2&-1\\2&3&2\end{array}\right][/tex]

Applying matrix operations we lead to the following equivalent matrix :

[tex]\left[\begin{array}{ccc}1&0&\frac{1}{7}\\0&1&\frac{4}{7}\\0&0&0\end{array}\right][/tex]

In this matrix we obtain that :

[tex]a=\frac{1}{7}[/tex]  and [tex]b=\frac{4}{7}[/tex]

We can verify this solution by replacing the values of [tex]a[/tex] and [tex]b[/tex] in the equation (I) :

[tex](\frac{1}{7}).V_{1}+(\frac{4}{7}).V_{2}=w[/tex]  ⇒

[tex](\frac{1}{7}).\left[\begin{array}{c}-3&1&2\end{array}\right]+(\frac{4}{7}).\left[\begin{array}{c}6&-2&3\end{array}\right]=\left[\begin{array}{c}3&-1&2\end{array}\right][/tex]    ⇒

[tex]\left[\begin{array}{c}3&-1&2\end{array}\right]=\left[\begin{array}{c}3&-1&2\end{array}\right][/tex]    

Q&A Education