Answer:
(5.5,8) and (5.5,3) are the possible midpoints
Step-by-step explanation:
Given
[tex]D = 11[/tex]
[tex]DE = 5[/tex]
Required
Determine the midpoint of DE
First, we need to determine the coordinates of E
If E is at the right of DE, then
[tex]D - E = 5[/tex]
[tex]11 - E = 5[/tex]
[tex]E = 11 - 5[/tex]
[tex]E = 6[/tex]
Hence,
(D,E) = (11,6)
Calculate Midpoint
[tex]Midpoint = \frac{1}{2} * (11,6)[/tex]
[tex]Midpoint = (5.5,3)[/tex]
Else:
[tex]E - D = 5[/tex]
[tex]E - 11 = 5[/tex]
[tex]E = 11 + 5[/tex]
[tex]E = 16[/tex]
Hence,
(D,E) = (11,16)
Calculate Midpoint
[tex]Midpoint = \frac{1}{2} * (11,16)[/tex]
[tex]Midpoint = (5.5,8)[/tex]
(5.5,8) and (5.5,3) are the possible midpoints