Respuesta :
Answer:
Choice a. approximately [tex]0.62[/tex].
Step-by-step explanation:
This explanation shows how to solve this problem using a typical [tex]z[/tex]-score table. Consider a normal distribution with mean [tex]\mu[/tex] and variance [tex]\sigma^2[/tex]. The [tex]z\![/tex]-score for a measurement of value [tex]x[/tex] would be [tex](x - \mu) / \sigma[/tex].
Convert all heights to inches:
- [tex]5\; \rm ft = 5 \times 12 \; in = 60\; \rm in[/tex].
- [tex]5\; \rm ft + 7\; \rm in = 5 \times 12 \; in + 7\; \rm in = 67\; \rm in[/tex].
Let [tex]X[/tex] represent the height (in inches) of a female from this population. By the assumptions in this question: [tex]X \sim \mathrm{N}(65.7,\, 3.2)[/tex]. The question is asking for the probability [tex]P(60 \le X \le 67)[/tex]. Calculate the [tex]z[/tex] score for the two boundary values:
- For the lower bound, [tex]60\; \rm in[/tex]: [tex]\displaystyle z = \frac{60 - 65.7}{3.2} \approx -1.78[/tex].
- For the upper bound, [tex]67\; \rm in[/tex]: [tex]\displaystyle z = \frac{67 - 65.7}{3.2} \approx 0.41[/tex].
Look up the corresponding probabilities on a typical [tex]z[/tex]-score table.
For the [tex]z[/tex]-score of the upper bound, the corresponding probability is approximately [tex]0.6591[/tex]. In other words:
[tex]P(x \le 67) \approx 0.6591[/tex]
On the other hand, some [tex]z[/tex]-score table might not include the probability for negative [tex]z\![/tex] scores. That missing part can be found using the symmetry of the normal distribution PDF.
The probability corresponding to [tex]P(z < 1.78)[/tex] (that's the opposite of the [tex]z\![/tex]-score at the lower bound) is approximately [tex]0.9625[/tex]. By the symmetry of the normal PDF:
[tex]P(z < -1.78) = 1 - P(z < 0 - (-1.78)) \approx 1 - 0.9625 = 0.0375[/tex].
Therefore:
[tex]P(X < 60) \approx 0.0375[/tex].
Calculate the probability of the interval between the two bounds:
[tex]\begin{aligned}P(60 \le X \le 65.7) &= P(X \le 65.7) - P(X \le 60)\\ &\approx 0.6591 - 0.0375 \approx 0.62 \end{aligned}[/tex].