Respuesta :
Answer:
1
 [tex]a =  2.82 \  m/s^2[/tex]
2
 [tex]t =  8.87 \  s[/tex]
3
 [tex]s =  204 \  m[/tex]
Explanation:
From the question we are told that
  The  speed of the car is  [tex]v  =  25.0 \  m/s[/tex]
  The length of the ramp is  [tex]d =  111 \ m[/tex]
  The  constant velocity of the traffic [tex]v_t  =  23.0 \  m/s[/tex]
Generally the acceleration of the car is mathematically represented as
      [tex]a =  \frac{v^2  -  u^2 }{2d}[/tex]
Here  u is  equal to zero given that the car started from rest so
      [tex]a =  \frac{25^2 - 0^2 }{2 *  111}[/tex]
    =>   [tex]a =  2.82 \  m/s^2[/tex]
Generally the time taken is mathematically represented as
   [tex]t = \frac{ v - u}{ a}[/tex]
=>  [tex]t  = \frac{ 25 - 0}{2.82}[/tex]
=> Â [tex]t = Â 8.87 \ Â s[/tex]
The  distance traveled by the traffic is mathematically represented as
 [tex]s =  v_{t}t + \frac{1}{2} a t^2[/tex]
Here  a is zero given that the traffic was moving at constant speed
=>   [tex]s  =  23 *  8.87[/tex]
=> Â Â [tex]s = Â 204 \ Â m[/tex]