Respuesta :
Answer:
[tex]Average\ Rate = 10[/tex]
Step-by-step explanation:
Given
[tex]g(x) = -x^2[/tex]
[tex](-8,-2)[/tex]
Required
Determine the average rate of change;
Average rate of change is calculated as thus;
[tex]Average\ Rate = \frac{g(b) - g(a)}{b - a}[/tex]
Where
[tex](a,b) = (-8,-2)[/tex]
i.e. a = -8 and b = -2
[tex]Average\ Rate = \frac{g(b) - g(a)}{b - a}[/tex] becomes
[tex]Average\ Rate = \frac{g(-2) - g(-8)}{-2 - (-8)}[/tex]
[tex]Average\ Rate = \frac{g(-2) - g(-8)}{-2 + 8}[/tex]
[tex]Average\ Rate = \frac{g(-2) - g(-8)}{6}[/tex]
Calculating g(-2)
Substitute -2 for x in [tex]g(x) = -x^2[/tex]
[tex]g(-2) = -(-2)^2[/tex]
[tex]g(-2) = -4[/tex]
Calculating g(-8)
Substitute -8 for x in [tex]g(x) = -x^2[/tex]
[tex]g(-8) = -(-8)^2[/tex]
[tex]g(-8) = -64[/tex]
Substitute values for g(-2) and g(-8)
[tex]Average\ Rate = \frac{g(-2) - g(-8)}{6}[/tex]
[tex]Average\ Rate = \frac{-4 - (-64)}{6}[/tex]
[tex]Average\ Rate = \frac{-4 + 64}{6}[/tex]
[tex]Average\ Rate = \frac{60}{6}[/tex]
[tex]Average\ Rate = 10[/tex]
Hence, the average rate of change is 10