Consider the following ordered data. 6 9 9 10 11 11 12 13 14 (a) Find the low, Q1, median, Q3, and high. low Q1 median Q3 high (b) Find the interquartile range.

Respuesta :

Answer:

Low             Q1                Median              Q3                 High

6                  9                     11                      12.5                14

The interquartile range = 3.5

Step-by-step explanation:

Given that:

Consider the following ordered data. 6 9 9 10 11 11 12 13 14

From the above dataset, the highest value = 14  and the lowest value = 6

The median is the middle number = 11

For Q1, i.e the median  of the lower half

we have the ordered data = 6, 9, 9, 10

here , we have to values as the middle number , n order to determine the median, the mean will be the mean average of the two middle numbers.

i.e

median = [tex]\dfrac{9+9}{2}[/tex]

median = [tex]\dfrac{18}{2}[/tex]

median = 9

Q3, i.e median of the upper half

we have the ordered data = 11 12 13 14

The same use case is applicable here.

Median = [tex]\dfrac{12+13}{2}[/tex]

Median = [tex]\dfrac{25}{2}[/tex]

Median = 12.5

Low             Q1                Median              Q3                 High

6                  9                     11                      12.5                14

The interquartile range = Q3 - Q1

The interquartile range =  12.5 - 9

The interquartile range = 3.5

Q&A Education