A 1.00 liter flask initially contained 0.24 mol NO2 at 700 K which decomposed according to the following equation. When equilibrium was achieved, 0.14 mol NO was present. Calculate Kc. 2NO2(g) ↔ 2NO(g) + O2(g)

Respuesta :

Answer:

[tex]Kc=0.14[/tex]

Explanation:

Hello,

In this case, for the given reaction, the equilibrium expression is:

[tex]Kc=\frac{[NO]^2[O_2]}{[NO_2]^2}[/tex]

That in terms of the reaction extent [tex]x[/tex] is written as (initial concentration of NO2 is 0.24 M for 0.24 mol in 1.00 L):

[tex]Kc=\frac{(2*x)^2(x)}{(0.24M-2*x)^2}[/tex]

Moreover, since at the equilibrium 0.14 moles of NO are present (a 0.14-M concentration), we can compute the reaction extent as shown below:

[tex][NO]=2*x=0.14M[/tex]

[tex]x=0.14M/2=0.07M[/tex]

In such a way, knowing [tex]x[/tex], we compute Kc as shown below:

[tex]Kc=\frac{(2*0.07)^2(0.07)}{(0.24M-2*0.07)^2}\\\\Kc=0.14[/tex]

Regards.

The kc is 0.14.

Equivalent expression:

Since

[tex]Kc = \frac{[NO]^2[O_2]}{[NO_2]^2}\\\\[/tex]

Here the reaction extent x should be written like the initial concentration of NO2 is 0.24 M for 0.24 mol in 1.00 L.

Now

[tex]Kc = \frac{(2\times\ x)^2}{(0.24M - 2\times x)^2}[/tex]

Since at the equilibrium 0.14 moles of NO are presented so the reaction should be

NO = 2*x = 0.14m

x = 0.07

Now kc should be

[tex]= \frac{(2\times 0.07)^2 (0.07)}{(0.24M - 2\times 0.07)^2}[/tex]

= 0.14

Learn more about equation here: https://brainly.com/question/24710653

Q&A Education