Respuesta :
Answer: [tex]6+\dfrac{14}{p}[/tex] .
Step-by-step explanation:
To find : The expression is equivalent to the product of [tex]p+\dfrac73\text{ and }\dfrac6p[/tex], where p ≠0.
Product of [tex]p+\dfrac73\text{ and }\dfrac6p[/tex] = [tex](p+\dfrac73)\times\dfrac6p[/tex]
Using distributive property: [tex](b+c)a= ba+ca[/tex]
[tex](p+\dfrac73)\times\dfrac6p=p\times\dfrac6p+\dfrac73\times\dfrac6p\\\\= 6+\dfrac{7}{1}\times\dfrac2p\\\\=6+\dfrac{14}{p}[/tex]
Hence, the required expression is [tex]6+\dfrac{14}{p}[/tex] .
Answer:
B!!!
Step-by-step explanation:
Multiply then divide every number by 2 to simplify.