Respuesta :

Answer: [tex]6+\dfrac{14}{p}[/tex] .

Step-by-step explanation:

To find : The expression is equivalent to the product of [tex]p+\dfrac73\text{ and }\dfrac6p[/tex], where p ≠0.

Product of [tex]p+\dfrac73\text{ and }\dfrac6p[/tex] = [tex](p+\dfrac73)\times\dfrac6p[/tex]

Using distributive property:  [tex](b+c)a= ba+ca[/tex]

[tex](p+\dfrac73)\times\dfrac6p=p\times\dfrac6p+\dfrac73\times\dfrac6p\\\\= 6+\dfrac{7}{1}\times\dfrac2p\\\\=6+\dfrac{14}{p}[/tex]

Hence, the required expression is [tex]6+\dfrac{14}{p}[/tex] .

Answer:

B!!!

Step-by-step explanation:

Multiply then divide every number by 2 to simplify.

Q&A Education