Answer:
Step-by-step explanation:
Given
Total Number of Cards = 52
Required
Probability of not picking a spade
Let P(S) represents the probability of picking a spade;
[tex]P(S) = \frac{n(S)}{Total}[/tex]
Where n(S) is the number of spades
[tex]n(S) = 13[/tex]
Substitute [tex]n(S) = 13[/tex] and 52 for Total
[tex]P(S) = \frac{13}{52}[/tex]
[tex]P(S) = \frac{1}{4}[/tex]
Let P(S') represents the probability of not picking a spade
In probability;
[tex]P(S) + P(S') = 1[/tex]
Substitute [tex]P(S) = \frac{1}{4}[/tex]
[tex]\frac{1}{4} + P(S') = 1[/tex]
[tex]P(S') = 1 - \frac{1}{4}[/tex]
[tex]P(S') = \frac{4-1}{4}[/tex]
[tex]P(S') = \frac{3}{4}[/tex]
[tex]P(S') = 0.75[/tex]
Hence, the probability of not selecting a spade is 3/4 or 0.75