Respuesta :

Answer:

Option (B)

Step-by-step explanation:

1). Given function is,

  [tex]f(x)=\frac{1}{x-1}+3[/tex]

  It the given function 'f' is transformed by a translation of 2 units to the right, the new function will be,

h(x) = f(x - 2)

h(x) = [tex]\frac{1}{(x-2)-1}+3[/tex]

      = [tex]\frac{1}{x-3}+3[/tex]

Further the new function is translated by 6 units down,

g(x) = h(x) - 6

g(x) = [tex]\frac{1}{x-3}+3-6[/tex]

      = [tex]\frac{1}{x-3}-3[/tex]

Since, transformed function 'g' passes through a point (x, -2),

g(x) = [tex]\frac{1}{x-3}-3[/tex]

-2 = [tex]\frac{1}{x-3}-3[/tex]  

3 - 2 = [tex]\frac{1}{x-3}[/tex]

x - 3 = 1

x = 4

Therefore, Option (B) will be the answer.

Q&A Education