Respuesta :

Answer:

[tex]y = \frac{1}{8}(x + 4)^2 + 4[/tex]

Step-by-step explanation:

Given:

Focus of parabola: (-4, 6)

Directrix: y = 2

Required:

Equation for the parabola

SOLUTION:

Using the formula, [tex] y = \frac{1}{2(b - k)}(x - a)^2 + \frac{1}{2}(b + k) [/tex] , the equation for the parabola can be derived.

Where,

a = -4

b = 6

k = 2

Plug these values into the equation formula

[tex] y = \frac{1}{2(6 - 2)}(x - (-4))^2 + \frac{1}{2}(6 + 2) [/tex]

[tex]y = \frac{1}{2(4)}(x + 4)^2 + \frac{1}{2}(8)[/tex]

[tex]y = \frac{1}{8}(x + 4)^2 + \frac{8}{2}[/tex]

[tex]y = \frac{1}{8}(x + 4)^2 + 4[/tex]

Q&A Education