An economist is interested in studying the income of consumers in a particular region. The population standard deviation is known to be $1,000. A random sample of 50 individuals resulted in an average income of $15,000. What is the width of the 90% confidence interval

Respuesta :

Answer:

The width is  [tex]w = 282.8[/tex]

Step-by-step explanation:

From the question we are told that

  The sample size is n =  50

  The  population standard deviation is  [tex]\sigma = \$ 1000[/tex]

   The sample size is  [tex]\= x = \$ 15,000[/tex]

Given that the confidence level is  90%  then the level of significance can be mathematically represented as

             [tex]\alpha = 100 - 90[/tex]  

             [tex]\alpha = 10 \%[/tex]  

              [tex]\alpha = 0.10[/tex]

Next we obtain the critical value of  [tex]\frac{\alpha }{2}[/tex] from the  normal distribution table, the value is  

             [tex]Z_{\frac{0.10 }{2} } = 1.645[/tex]

Generally the margin of error is mathematically represented as

               [tex]E = Z_{\frac{0.10}{2} } * \frac{\sigma }{\sqrt{n} }[/tex]

substituting values

                 [tex]E = 1.645 * \frac{1000 }{\sqrt{50 }}[/tex]

=>                [tex]E = 141.42[/tex]

  The width of the 90%  confidence level is mathematically represented as

                      [tex]w = 2 * E[/tex]

substituting values

                       [tex]w = 2 * 141.42[/tex]

                       [tex]w = 282.8[/tex]

 

Q&A Education