Answer:
The number of ways is [tex]\left n} \atop {}} \right. P_r = 336[/tex]
Step-by-step explanation:
From the question we are told that
The number of tickets are [tex]n = 8[/tex]
The number of finalist are [tex]r =3[/tex]
Generally the number of way by which this winners can be drawn and arrange in the order of [tex]1^{st} , \ 2nd , \ 3rd[/tex] is mathematically represented as
[tex]\left n} \atop {}} \right. P_r = \frac{n\ !}{(n-r) !}[/tex]
substituting values
[tex]\left n} \atop {}} \right. P_r = \frac{ 8!}{(8-3) !}[/tex]
[tex]\left n} \atop {}} \right. P_r = \frac{ 8* 7*6*5*4*3*2*1}{ 5*4*3*2*1}[/tex]
[tex]\left n} \atop {}} \right. P_r = 336[/tex]