You plan to conduct a marketing experiment in which students are to taste one of two different brands of soft drink. Their task is to correctly identify the brand tasted. You select a random sample of 200 students and assume that the students have no ability to distinguish between the two brands. The probability is 90% that the sample percentage is contained within what symmetrical limits of the population percentage

Respuesta :

Answer:

the probability is 90% that the sample percentage is contained within 45.5% and 54.5% symmetric limits of the population percentage.

Step-by-step explanation:

From the given information:

Sample size n = 200

The standard deviation for a sampling distribution for two brands are equally likely because the individual has no ability to discriminate between the two soft drinks.

The population proportion [tex]p_o[/tex] = 1/2 = 0.5

NOW;

[tex]\sigma _p = \sqrt{\dfrac{p_o(1-p_o)}{n}}[/tex]

[tex]\sigma _p = \sqrt{\dfrac{0.5(1-0.5)}{200}}[/tex]

[tex]\sigma _p = \sqrt{\dfrac{0.5(0.5)}{200}}[/tex]

[tex]\sigma _p = \sqrt{\dfrac{0.25}{200}}[/tex]

[tex]\sigma _p = \sqrt{0.00125}[/tex]

[tex]\sigma _p = 0.035355[/tex]

However, in order to determine the symmetrical limits of the population percentage given that the z probability is 90%.

we use the Excel function as computed as follows in order to determine the z probability  = NORMSINV (0.9)

z value = 1.281552

Now the symmetrical limits of the population percentage can be determined as: ( 1.28, -1.28)

[tex]1.28 = \dfrac{X - 0.5}{0.035355}[/tex]

1.28 × 0.035355 = X - 0.5

0.0452544= X - 0.5

0.0452544 + 0.5 = X

0.5452544 = X

X [tex]\approx[/tex] 0.545

X = 54.5%

[tex]-1.28 = \dfrac{X - 0.5}{0.035355}[/tex]

- 1.28 × 0.035355 = X - 0.5

- 0.0452544= X - 0.5

- 0.0452544 + 0.5 = X

0.4547456 = X

X [tex]\approx[/tex] 0.455

X = 45.5%

Therefore , we can conclude that the probability is 90% that the sample percentage is contained within 45.5% and 54.5% symmetric limits of the population percentage.

Q&A Education