If you randomly select a card from a well-shuffled standard deck of 52 cards, what is the probability that the card you select is a heart or Ace

Respuesta :

Answer:

[tex]P(A\ or\ H) = \frac{4}{13}[/tex]

Step-by-step explanation:

Given

Number of Cards = 52

Required

Determine  the probability of picking a heart or ace

Represent Ace with Ace and Heart = H

In a standard pack of cards; there are

[tex]n(A) = 4[/tex]

[tex]n(H) = 13[/tex]

[tex]n(A\ and\ H) = 1[/tex]

[tex]Total = 52[/tex]

Because the events are non mutually exclusive

[tex]P(A\ or\ H) = P(A) + P(H) - P(A\ and\ H)[/tex]

Where

[tex]P(A) = \frac{n(A)}{Total} = \frac{4}{52}[/tex]

[tex]P(H) = \frac{n(H)}{Total} = \frac{13}{52}[/tex]

[tex]P(A\ and\ H) = \frac{n(A\ and\ H)}{Total} = \frac{1}{52}[/tex]

Substitute these values in the above formula

[tex]P(A\ or\ H) = P(A) + P(H) - P(A\ and\ H)[/tex]

[tex]P(A\ or\ H) = \frac{4}{52} + \frac{13}{52} - \frac{1}{52}[/tex]

Take LCM

[tex]P(A\ or\ H) = \frac{4 + 13 - 1}{52}[/tex]

[tex]P(A\ or\ H) = \frac{16}{52}[/tex]

Reduce fraction to lowest term

[tex]P(A\ or\ H) = \frac{4}{13}[/tex]

Hence, probability of a heart or ace is 4/13

Q&A Education