A regular polygon inscribed in a circle can be used to derive the formula for the area of a circle. The polygon area can be expressed in terms of the area of a triangle. Let s be the side length of the polygon, let r be the hypotenuse of the right triangle, let h be the height of the triangle, and let n be the number of sides of the regular polygon. polygon area = n(12sh) Which statement is true? As h increases, s approaches r so that rh approaches r². As r increases, h approaches r so that rh approaches r². As s increases, h approaches r so that rh approaches r². As n increases, h approaches r so that rh approaches r².

A regular polygon inscribed in a circle can be used to derive the formula for the area of a circle The polygon area can be expressed in terms of the area of a t class=

Respuesta :

Answer:

Option (D)

Step-by-step explanation:

Formula to get the area of a regular polygon in a circle will be,

Area = [tex]n[\frac{1}{2}\times (\text{Base})\times (\text{Height})][/tex]

        = [tex]n[\frac{1}{2}\times (\text{s})\times (\text{h})][/tex]

Here 'n' is the number of sides.

If n increases, h approaches r so that 'rh' approaches r².

In other words, if the number of sides of the polygon gets increased, area of the polygon approaches the area of the circle.

Therefore, Option (4) will be the answer.

In this exercise it is necessary to have knowledge about polygons, so we have to:

Letter D

Then using the formula for the area of ​​a regular polygon we find that:

[tex]A=n(1/2*B*H)\\=n(1/2*S*H)[/tex]

So from this way we were not able to identify the option that best corresponds to this alternative.

See more about polygons at  brainly.com/question/17756657

Q&A Education