Respuesta :

Complete Question

Find the probability of winning a lottery with the following rule. Select the  six  winning numbers from​ 1, 2, . . .​ ,34 . ​(In any order. No​ repeats.)

Answer:

The  probability is  [tex]P(winning ) = 7.435 *10^{-7}[/tex]

Step-by-step explanation:

From the question we are told that

     The  total winning numbers   n =  34

      The total number to select is   r =  6

The total outcome of  lottery is mathematically represented as

      [tex]t_{outcome}) = \left n } \atop {}} \right. C_r[/tex]

      [tex]t_{outcome}) = \frac{n! }{(n-r )! r!}[/tex]

substituting values

      [tex]t_{outcome}) = \frac{ 34 ! }{(34 - 6 )! 6!}[/tex]

      [tex]t_{outcome}) = \frac{ 34 ! }{28 ! 6!}[/tex]

     [tex]t_{outcome}) =1344904[/tex]

The  number of desired outcome is  

           [tex]t_{desired} = 1[/tex]

 this is because the desired outcome is choosing the six winning number

   The probability of winning a lottery is mathematically represented as

      [tex]P(winning ) = \frac{t_{desired}}{t_{outcome}}[/tex]

substituting values  

     [tex]P(winning ) = \frac{1}{1344904 }[/tex]

      [tex]P(winning ) = 7.435 *10^{-7}[/tex]

     

Q&A Education