Respuesta :

Answer:

[tex]\bold{cos\dfrac{A}{2} = -\dfrac{1}{\sqrt3}}[/tex]

Step-by-step explanation:

Given that:

[tex]cosA=-\dfrac{1}3[/tex]

and

[tex]tanA > 0[/tex]

To find:

[tex]cos\dfrac{A}{2} = ?[/tex]

Solution:

First of all,we have cos value as negative and tan value as positive.

It is possible in the 3rd quadrant only.

[tex]\dfrac{A}{2}[/tex] will lie in the 2nd quadrant so [tex]cos\dfrac{A}{2}[/tex] will be negative again.

Because Cosine is positive in 1st and 4th quadrant.

Formula:

[tex]cos2\theta =2cos^2(\theta) - 1[/tex]

Here [tex]\theta = \frac{A}{2}[/tex]

[tex]cosA =2cos^2(\dfrac{A}{2}) - 1\\\Rightarrow 2cos^2(\dfrac{A}{2}) =cosA+1\\\Rightarrow 2cos^2(\dfrac{A}{2}) =-\dfrac{1}3+1\\\Rightarrow 2cos^2(\dfrac{A}{2}) =\dfrac{2}3\\\Rightarrow cos(\dfrac{A}{2}) = \pm \dfrac{1}{\sqrt3}[/tex]

But as we have discussed, [tex]cos\dfrac{A}{2}[/tex] will be negative.

So, answer is:

[tex]\bold{cos\dfrac{A}{2} = -\dfrac{1}{\sqrt3}}[/tex]

Q&A Education