Respuesta :
Answer:
d = √8
d ≈ 2.82843
Step-by-step explanation:
Distance Formula: [tex]d = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
Simply plug in our coordinates into the distance formula:
[tex]d = \sqrt{(-3 + 5)^2+(-8 + 6)^2}[/tex]
[tex]d = \sqrt{(2)^2+(-2)^2}[/tex]
[tex]d = \sqrt{4+4}[/tex]
[tex]d = \sqrt{8}[/tex]
To find the decimal, simply evaluate the square root:
√8 = 2.82843
Answer:
[tex] \boxed{2 \sqrt{2} \: \: units}[/tex]
Step-by-step explanation:
Let the points be A and B
A ( - 5 , - 6 ) ⇒ ( x₁ , y₁ )
B ( -3 , - 8 )⇒( x₂ , y₂ )
Now, let's find the distance between these two points:
AB = [tex] \mathsf{ \sqrt{ {(x2 - x1)}^{2} + {(y2 - y1)}^{2} } }[/tex]
Plug the values
⇒[tex] \mathsf{ \sqrt{( - 3 - ( - 5) )^{2} + {( - 8 - ( - 6))}^{2} } }[/tex]
When there is a ( - ) in front of an expression in parentheses, change the sign of each term in the expression
⇒[tex] \mathsf{ \sqrt{ {( - 3 + 5)}^{2} + {( - 8 + 6)}^{2} } }[/tex]
Calculate
⇒[tex] \mathsf{ \sqrt{ {(2)}^{2} + {( - 2)}^{2} } }[/tex]
Evaluate the power
⇒[tex] \mathsf{ \sqrt{4 + 4} }[/tex]
Add the numbers
⇒[tex] \mathsf{\sqrt{8} }[/tex]
Simplify the radical expression
⇒[tex] \mathsf{ \sqrt{2 \times 2 \times 2}} [/tex]
⇒[tex] \mathsf{2 \sqrt{2} }[/tex] units
Hope I helped!
Best regards!