contestada

Find the distance between (-5,-6) and (-3,-8 WILL GIVEBRANLIEST TO FIRST PERSON WHO AWNSES WITH EXPLANATION

Respuesta :

Space

Answer:

d = √8

d ≈ 2.82843

Step-by-step explanation:

Distance Formula: [tex]d = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

Simply plug in our coordinates into the distance formula:

[tex]d = \sqrt{(-3 + 5)^2+(-8 + 6)^2}[/tex]

[tex]d = \sqrt{(2)^2+(-2)^2}[/tex]

[tex]d = \sqrt{4+4}[/tex]

[tex]d = \sqrt{8}[/tex]

To find the decimal, simply evaluate the square root:

√8 = 2.82843

Answer:

[tex] \boxed{2 \sqrt{2} \: \: units}[/tex]

Step-by-step explanation:

Let the points be A and B

A ( - 5 , - 6 ) ⇒ ( x₁ , y₁ )

B ( -3 , - 8 )⇒( x₂ , y₂ )

Now, let's find the distance between these two points:

AB = [tex] \mathsf{ \sqrt{ {(x2 - x1)}^{2} + {(y2 - y1)}^{2} } }[/tex]

Plug the values

⇒[tex] \mathsf{ \sqrt{( - 3 - ( - 5) )^{2} + {( - 8 - ( - 6))}^{2} } }[/tex]

When there is a ( - ) in front of an expression in parentheses, change the sign of each term in the expression

⇒[tex] \mathsf{ \sqrt{ {( - 3 + 5)}^{2} + {( - 8 + 6)}^{2} } }[/tex]

Calculate

⇒[tex] \mathsf{ \sqrt{ {(2)}^{2} + {( - 2)}^{2} } }[/tex]

Evaluate the power

⇒[tex] \mathsf{ \sqrt{4 + 4} }[/tex]

Add the numbers

⇒[tex] \mathsf{\sqrt{8} }[/tex]

Simplify the radical expression

⇒[tex] \mathsf{ \sqrt{2 \times 2 \times 2}} [/tex]

⇒[tex] \mathsf{2 \sqrt{2} }[/tex] units

Hope I helped!

Best regards!

Q&A Education