Respuesta :

Answer:

1/4

Step-by-step explanation:

What is the ratio of the length of to DE the length of BC

The perimeter of a sector is given by:

P = [tex]\frac{\theta}{360}**2\pi r[/tex]

Where [tex]\theta[/tex] is the angle it subtends from the center and r is the radius of the circle.

For Sector ADE, the radius (r) = r/2 and the angle  [tex]\theta[/tex]  = β. Therefore:

Perimeter of DE = [tex]\frac{\beta}{360}**2\pi (\frac{r}{2} )=\frac{\beta}{360}(\pi r)[/tex]

For Sector ABC, the radius (r) = r and the angle  [tex]\theta[/tex]  = 2β. Therefore:

Perimeter of BC = [tex]\frac{2\beta}{360}**2\pi r=\frac{2\beta}{360}(2\pi r)=\frac{\beta}{360}*(4\pi r)[/tex]

The ratio of the length of to DE the length of BC =

Answer:

1/4

Step-by-step explanation:

Q&A Education