A population is estimated to have a standard deviation of 9. We want to estimate the population mean within 2, with a 99% level of confidence. How large a sample is required? (Round up your answer to the next whole number.)

Respuesta :

Answer:

The sample required is  [tex]n = 135[/tex]

Step-by-step explanation:

From the question we are told that

     The  standard deviation is  [tex]\sigma = 9[/tex]

      The margin of error is [tex]E = 2[/tex]

     

Given that the confidence level is  99%  then the level of  significance is mathematically evaluated as

         [tex]\alpha = 100-99[/tex]

        [tex]\alpha = 1 \%[/tex]

        [tex]\alpha = 0.01[/tex]

Next we will obtain the critical value  [tex]\frac{\alpha }{2}[/tex] from the normal distribution table(reference  math dot armstrong dot edu) , the value is  

             [tex]Z_{\frac{\alpha }{2} } = Z_{\frac{0.05 }{2} } = 2.58[/tex]

The  sample size is mathematically represented as

          [tex]n = [ \frac{Z_{\frac{\alpha }{2} } * \sigma }{E} ]^2[/tex]

substituting values

           [tex]n = [ \frac{ 2.58 * 9 }{2} ]^2[/tex]

            [tex]n = 135[/tex]

Q&A Education