Respuesta :

A certain​ animal's body temperature has a mean of 94.72° F and a standard deviation of 0.57°F. Convert the given temperatures to z scores.

a. 93.52 °F  b. 95.22 °F      c. 94.72 °F

Answer:

a. z = - 2.1053

b. z = 0.87719

c. z = 0

Step-by-step explanation:

Given that :

The population mean μ = 94.72

The standard deviation σ = 0.57

the formula for calculating the standard normal z score, which can be represented as:

[tex]z= \dfrac{\overline x - \mu}{\sigma}[/tex]

For  a.

The sample mean [tex]\bar x[/tex] = 93.52

The z score can be computed as follows:

[tex]z= \dfrac{\overline x - \mu}{\sigma}[/tex]

[tex]z= \dfrac{93.52 - 94.72}{0.57}[/tex]

[tex]z= \dfrac{-1.2}{0.57}[/tex]

z = - 2.1053

For  b.

The sample mean [tex]\bar x[/tex]  =  95.22    

[tex]z= \dfrac{\overline x - \mu}{\sigma}[/tex]

[tex]z= \dfrac{95.22 - 94.72}{0.57}[/tex]

[tex]z= \dfrac{0.5}{0.57}[/tex]

z = 0.87719

For  c.

The sample mean [tex]\bar x[/tex]  = 94.72

[tex]z= \dfrac{\overline x - \mu}{\sigma}[/tex]

[tex]z= \dfrac{94.72 - 94.72}{0.57}[/tex]

[tex]z= \dfrac{0}{0.57}[/tex]

z = 0

Q&A Education