Answer:
[tex] \boxed{99°}[/tex]
Step-by-step explanation:
m<MON = 8x - 13°
m<LOM = 7x - 17°
To find : m <MON
First, we have to find the value of x :
Create an equation
[tex] \mathrm{8x - 13 + 7x - 17 = 180}[/tex] ( sum of angle in straight line )
Collect like terms
[tex] \mathrm{15x - 13 - 17 = 180}[/tex]
Calculate
[tex] \mathrm{15x - 30 = 180}[/tex]
Move constant to R.H.S and change its sign
[tex] \mathrm{15x = 180 + 30}[/tex]
Calculate the sum
[tex] \mathrm{15x = 210}[/tex]
Divide both sides of the equation by 15
[tex] \mathrm{ \frac{15x}{15} = \frac{210}{15} }[/tex]
Calculate
[tex] \mathrm{x = 14}[/tex]
Now, let's find the value of m<MON
[tex] \mathrm{8x - 13}[/tex]
Plug the value of x
[tex] \mathrm{ = 8 \times 14 - 13}[/tex]
Calculate the product
[tex] \mathrm{ = 112 - 13}[/tex]
Calculate the difference
[tex] \mathrm{ = 99}[/tex] °
Hope I helped!
Best regards!