A chemist fills a reaction vessel with 0.978 g aluminum hydroxide AlOH3 solid, 0.607 M aluminum Al+3 aqueous solution, and 0.396 M hydroxide OH− aqueous solution at a temperature of 25.0°C.
Under these conditions, calculate the reaction free energy ΔG for the following chemical reaction:
Al(OH)3(s) = A1+ (aq) +30H (aq)
Use the thermodynamic information in the ALEKS Data tab. Round your answer to the nearest kilojoule.
KJ

Respuesta :

Answer: [tex]\Delta G^{0}[/tex] = 168.12 kJ

Explanation: Gibbs Free Energy, at any time, is defined as the enthalpy of the system minus product of temperature and entropy of the reaction, i.e.:

[tex]\Delta G^{0} = \Delta H^{0} - T.\Delta S^{0}[/tex]

Enthalpy is defined as internal heat existent in the system. It is calculated as:

[tex]\Delta H^{0} = \Sigma H^{0}_{product} - \Sigma H^{0}_{reagent}[/tex]

Using Enthalpy Formation Table:

[tex]\Delta H^{0} = [3*(-299.9)+(-524.7)] - (-1277)[/tex]

[tex]\Delta H^{0} = 62,6 kJ[/tex]

Entropy is the degree of disorder in the system. It is found by:

[tex]\Delta S^{0} = \Sigma S^{0}_{products} - \Sigma S^{0}_{reagents}[/tex]

Calculating:

[tex]\Delta S^{0} = (-321.7) + 3(-10.8) - 0[/tex]

[tex]\Delta S^{0} = -354.1J[/tex]

And so, Gibbs Free energy will be:

[tex]\Delta G^{0} = \Delta H^{0} - T.\Delta S^{0}[/tex]

[tex]\Delta G^{0} = 62600 - [298.(-354.1)][/tex]

[tex]\Delta G^{0} = 168121.8 J[/tex]

Rounding to the nearest kJ:

[tex]\Delta G^{0}[/tex] = 168.12 kJ

Q&A Education