Respuesta :
Answer: [tex]\Delta G^{0}[/tex] = 168.12 kJ
Explanation: Gibbs Free Energy, at any time, is defined as the enthalpy of the system minus product of temperature and entropy of the reaction, i.e.:
[tex]\Delta G^{0} = \Delta H^{0} - T.\Delta S^{0}[/tex]
Enthalpy is defined as internal heat existent in the system. It is calculated as:
[tex]\Delta H^{0} = \Sigma H^{0}_{product} - \Sigma H^{0}_{reagent}[/tex]
Using Enthalpy Formation Table:
[tex]\Delta H^{0} = [3*(-299.9)+(-524.7)] - (-1277)[/tex]
[tex]\Delta H^{0} = 62,6 kJ[/tex]
Entropy is the degree of disorder in the system. It is found by:
[tex]\Delta S^{0} = \Sigma S^{0}_{products} - \Sigma S^{0}_{reagents}[/tex]
Calculating:
[tex]\Delta S^{0} = (-321.7) + 3(-10.8) - 0[/tex]
[tex]\Delta S^{0} = -354.1J[/tex]
And so, Gibbs Free energy will be:
[tex]\Delta G^{0} = \Delta H^{0} - T.\Delta S^{0}[/tex]
[tex]\Delta G^{0} = 62600 - [298.(-354.1)][/tex]
[tex]\Delta G^{0} = 168121.8 J[/tex]
Rounding to the nearest kJ:
[tex]\Delta G^{0}[/tex] = 168.12 kJ