Answer:
Explanation:
dipole moment = qs = q x s
= charge x charge separation
charge = q
separation between charge = s
half separation l = s / 2
dipole has two charges + q and - q separated by distance s .
Potential at distance x along x axis due to + q
[tex]v_1=\frac{1}{4\pi \epsilon } \times\frac{q}{x-l}[/tex]
Potential at distance x along x axis due to - q
[tex]v_2=\frac{1}{4\pi \epsilon } \times\frac{-q}{x+l}[/tex]
Total potential
v = v₁ + v₂
[tex]v=\frac{1}{4\pi \epsilon } \times( \frac{q}{x-l}-\frac{q}{x+l})[/tex]
[tex]v=\frac{1}{4\pi \epsilon } \times\frac{2ql}{x^2-l^2}[/tex]
[tex]v=\frac{1}{4\pi \epsilon } \times\frac{qs}{x^2-(\frac{s}{2}) ^2}[/tex]
Potential at distance y along y axis due to + q
[tex]v_1=\frac{1}{4\pi \epsilon } \times\frac{qs}{(y^2+\frac{s^2}{4})^\frac{1}{2} }[/tex]
Potential at distance y along y axis due to - q
[tex]v_1=\frac{1}{4\pi \epsilon } \times\frac{-qs}{(y^2+\frac{s^2}{4})^\frac{1}{2} }[/tex]
Total potential
v = v₁ + v₂
[tex]v= 0[/tex]