Respuesta :

Answer:

The percentage change in resistance of the wire is 69%.

Explanation:

Resistance of a wire can be determined by,

R = (ρl) ÷ A

Where R is its resistance, l is the length of the wire, A its cross sectional area and ρ its resistivity.

When the wire is stretched, its length and area changes but its volume and resistivity remains constant.

[tex]l_{o}[/tex] = 1.3l, and [tex]A_{o}[/tex] = [tex]\frac{A}{1.3}[/tex]

So that;

[tex]R_{o}[/tex] = (ρ[tex]l_{o}[/tex]) ÷ [tex]A_{o}[/tex] = (ρ × 1.3l) ÷ ([tex]\frac{A}{1.3}[/tex])

    = (1.3lρ) ÷ ([tex]\frac{A}{1.3}[/tex])

    = [tex](1.3)^{2}[/tex] × [(ρl) ÷ A]

   = 1.69R               (∵ R = (ρl) ÷ A)

[tex]R_{o}[/tex] = 1.69R

Where [tex]R_{o}[/tex] is the new resistance, [tex]l_{o}[/tex] is the new length, and [tex]A_{o}[/tex] is the new area after stretching the wire.

The change in resistance of the wire = [tex]R_{o}[/tex] - R

                                      = 1.69R  - 1R

                                      = 0.69R

The percentage change in resistance = [tex]\frac{0.69R}{R}[/tex] × 100

                                                               = 0.69 × 100

                                                              = 69%

The percentage change in resistance of the wire is 69%.

Q&A Education