contestada

A laser used for many applications of hard surface dental work emits 2780-nm wavelength pulses of variable energy (0-300 mJ) about 20 times per second.part a. Determine the number of photons in one 80-mJ pulse.part b. Determine the average power of photons in one 80-mJ pulse during 1 s.

Respuesta :

Answer:

a

    [tex]n = 1.119 *10^{18} \ photons[/tex]

b

  [tex]P = 1.6 \ W[/tex]

Explanation:

From the question we are told that

    The wavelength is  [tex]\lambda = 2780 nm = 2780 *10^{-9} \ m[/tex]

     The  energy  is  [tex]E = 80 mJ = 80 *10^{-3} \ J[/tex]

This energy is mathematically represented as

     [tex]E = \frac{n * h * c }{\lambda }[/tex]

Where  c is the speed of light with a value  [tex]c = 3.0 *10^{8} \ m/s[/tex]

             h is the Planck's  constant with the value  [tex]h = 6.626 *10^{-34} \ J \cdot s[/tex]

             n is the number of pulses

So

      [tex]n = \frac{E * \lambda }{h * c }[/tex]

substituting values

       [tex]n = \frac{80 *10^{-3} * 2780 *10^{-9}}{6.626 *10^{-34} * 3.0 *10^{8} }[/tex]

       [tex]n = 1.119 *10^{18} \ photons[/tex]

Given that the pulses where emitted 20 times in one second then the period of the pulse is

       [tex]T = \frac{1}{20}[/tex]

      [tex]T = 0.05 \ s[/tex]

Hence the average power of photons in one 80-mJ pulse during 1 s is mathematically represented as

       [tex]P = \frac{E}{T}[/tex]

substituting values

       [tex]P = \frac{ 80 *10^{-3}}{0.05}[/tex]

        [tex]P = 1.6 \ W[/tex]

Q&A Education