A hot metal bar is submerged in a large reservoir of water whose temperature is 60°F. The temperature of the bar 20 s after submersion is 120°F. After 1 min submerged, the temperature has cooled to 100°F. (Let y be measured in degrees Fahrenheit, and t be measured in seconds.) (a) Determine the cooling constant k. k = s−1 (b) What is the differential equation satisfied by the temperature y(t)? (Use y for y(t).) y'(t) = (c) What is the formula for y(t)? y(t) = (d) Determine the temperature of the bar at the moment it is submerged. (Round your answer to one decimal place.)

Respuesta :

Answer:

a.  k = -0.01014 s⁻¹

b.  [tex]\mathbf{\dfrac{dy}{dt} = - \dfrac{In(\dfrac{3}{2})}{40}(y-60)}[/tex]

c.  [tex]\mathbf{y(t) = 60+ \dfrac{60 \sqrt{3}}{\sqrt{2}} \ e^{\dfrac{-In(\dfrac{3}{2})\ t}{40}}}[/tex]

d.  y(t) = 130.485°F

Step-by-step explanation:

A hot metal bar is submerged in a large reservoir of water whose temperature is 60°F. The temperature of the bar 20 s after submersion is 120°F. After 1 min submerged, the temperature has cooled to 100°F.

(Let y be measured in degrees Fahrenheit, and t be measured in seconds.)

We are to determine :

a.  Determine the cooling constant k. k = s−1

By applying the new law of cooling

[tex]\dfrac{dT}{dt} = k \Delta T[/tex]

[tex]\dfrac{dT}{dt} = k(T_1-T_2)[/tex]

[tex]\dfrac{dT}{dt} = k (T - 60)[/tex]

Taking the integral.

[tex]\int \dfrac{dT}{T-60} = \int kdt[/tex]

㏑ (T -60) = kt + C

T - 60 = [tex]e^{kt+C}[/tex]

[tex]T = 60+ C_1 e^{kt} ---- (1)[/tex]

After 20 seconds, the temperature of the bar submersion is 120°F

T(20) = 120

From equation (1) ,replace t = 20s and T = 120

[tex]120 = 60 + C_1 e^{20 \ k}[/tex]

[tex]120 - 60 = C_1 e^{20 \ k}[/tex]

[tex]60 = C_1 e^{20 \ k} --- (2)[/tex]

After 1 min i.e 60 sec , the temperature  = 100

T(60) = 100

From equation (1) ; replace t = 60 s and T = 100

[tex]100 = 60 + c_1 e^{60 \ t}[/tex]

[tex]100 - 60 =c_1 e^{60 \ t}[/tex]

[tex]40 =c_1 e^{60 \ t} --- (3)[/tex]

Dividing equation (2) by (3) , we have:

[tex]\dfrac{60}{40} = \dfrac{C_1e^{20 \ k } }{C_1 e^{60 \ k}}[/tex]

[tex]\dfrac{3}{2} = e^{-40 \ k}[/tex]

[tex]-40 \ k = In (\dfrac{3}{2})[/tex]

- 40 k = 0.4054651

[tex]k = - \dfrac{0.4054651}{ 40}[/tex]

k = -0.01014 s⁻¹

 

b. What is the differential equation satisfied by the temperature y(t)?

Recall that :

[tex]\dfrac{dT}{dt} = k \Delta T[/tex]

[tex]\dfrac{dT}{dt} = \dfrac{- In (\dfrac{3}{2})}{40}(T-60)[/tex]

Since y is the temperature of the body , then :

[tex]\mathbf{\dfrac{dy}{dt} = - \dfrac{In(\dfrac{3}{2})}{40}(y-60)}[/tex]

(c) What is the formula for y(t)?

From equation (1) ;

where;

[tex]T = 60+ C_1 e^{kt} ---- (1)[/tex]

Let y be measured in degrees Fahrenheit

[tex]y(t) = 60 + C_1 e^{-\dfrac{In (\dfrac{3}{2})}{40}t}[/tex]

From equation (2)

[tex]C_1 = \dfrac{60}{e^{20 \times \dfrac{-In(\dfrac{3}{2})}{40}}}[/tex]

[tex]C_1 = \dfrac{60}{e^{-\dfrac{1}{2} {In(\dfrac{3}{2})}}}[/tex]

[tex]C_1 = \dfrac{60}{e^ {In(\dfrac{3}{2})^{-1/2}}}}[/tex]

[tex]C_1 = \dfrac{60}{\sqrt{\dfrac{2}{3}}}[/tex]

[tex]C_1 = \dfrac{60 \times \sqrt{3}}{\sqrt{2}}}[/tex]

[tex]\mathbf{y(t) = 60+ \dfrac{60 \sqrt{3}}{\sqrt{2}} \ e^{\dfrac{-In(\dfrac{3}{2})\ t}{40}}}[/tex]

(d) Determine the temperature of the bar at the moment it is submerged.

At the moment it is submerged t = 0

[tex]\mathbf{y(0) = 60+ \dfrac{60 \sqrt{3}}{\sqrt{2}} \ e^{\dfrac{-In(\dfrac{3}{2})\ 0}{40}}}[/tex]

[tex]\mathbf{y(t) = 60+ \dfrac{60 \sqrt{3}}{\sqrt{2}} }[/tex]

y(t) = 60 + 70.485

y(t) = 130.485°F

Q&A Education