Answer:
b = - 3.7
Step-by-step explanation:
here are the data values:
x  y      XY     X²
14 46 Â Â Â Â 644 Â Â Â 196
15 49 Â Â Â Â 735 Â Â Â 225
16 37 Â Â Â Â Â 592 Â Â Â 256
17 42 Â Â Â Â Â 714 Â Â Â Â 289
18 37 Â Â Â Â Â 666 Â Â Â 324
19 31 Â Â Â Â Â 589 Â Â Â 361
20 25 Â Â Â Â 500 Â Â Â 400
21 23 Â Â Â Â Â 483 Â Â Â 441
22 20 Â Â Â Â 440 Â Â Â 484
23 15 Â Â Â Â Â 345 Â Â Â 529
24 12 Â Â Â Â 288 Â Â Â 576
now we are required to find the summation (total) of all values of X, Y, XY and X².
∑X = 209
∑Y = 337
∑XY = 5996
∑X² = 4081
The formular for finding b is given as:
b = n∑XY - (X)(Y) / n∑X² - (∑X)²
= 11(5996) - (209)(337) / 11(4081) - (209)²
= 65956 - 70433 / 44891 - 43681
= -4477/ 1210
= -3.7
The question asked us to find the value of b but we can  go further to find the equation of the regression line:
a = ∑Y - b∑X / n
= 337 - (-3.7)(209)/ Â 11
=1110.3/11
= 100.94
the equation is:
Y = 100.94 - 3.7X
I hope you find my solution useful!
=