A particle moves in a plane according to X=Rsinwt + wRt Y=Rcoswt+R where w and R constant this curved called cycloid path traced out by a point on rim of wheel that slipping with x-axis sketch the path calculate intantaneous velocity and acceleration when particle is its axis maximun and minimun value of Y

Respuesta :

Answer:

maximum  point  y= 2R

 vₓ = wR ,  v_{y} = 0, aₓ = 0,  a{y} = - Rw²

minimum point   y=R

vₓ = wR , v_{y} = - R w,  aₓ = - R w²,  a_{y} = 0

Explanation:

The definition of velocity is

        v = dr / dt

        vₓ = dx / dt

        [tex]v_{y}[/tex] = dy / dt

        vₓ = Rw cos wt + wR

        v_{y} = -Rw sin wt

acceleration is defined by

         a = dv / dt

         aₓ = -Rw² sin wt

         a_{y} = - R w² cos wt

these are the general expressions for velocity and acceleration, to find the explicit values ​​for the maximum and minimum y points, let's find these points and substitute

maximum  point

         y = R cos wt + R

the heat is maximum when the cosine is worth 1

         y_max = 2R

at this point the speed is

         vₓ = wR

         v_{y} = 0

the acceleration is

         aₓ = 0

         a_{y} = - Rw²

minimum point

        this occurs when the cosine is zero

        y = R

speed is

       vₓ = wR

       v_{y} = - R w

acceleration is

        aₓ = - R w²

        a_{y} = 0

Q&A Education