A population has a standard deviation of 16. If a sample of size 64 is selected from this population, what is the probability that the sample mean will be within 2 of the population mean?

a. Since the mean is not given, there is no answer to this question.

b. -0.6826

c. 0.3413

d. 0.6826

e. -0.3413

Respuesta :

Answer:

The correct option is  D

Step-by-step explanation:

From the question we are told that

    The standard deviation is  [tex]\sigma = 16[/tex]

     The sample size is  n =  64

The standard error of mean is mathematically evaluated as

        [tex]\sigma _{\= x } = \frac{\sigma }{\sqrt{n} }[/tex]

substituting values

        [tex]\sigma _{\= x } = \frac{16 }{\sqrt{64} }[/tex]

        [tex]\sigma _{\= x } = 2[/tex]

Generally the probability that the sample mean will be within 2 of the population mean is mathematically represented as

              [tex]P( \mu - 2 < \= x < \mu + 2) = P(\frac{( \mu - 2 ) - \mu }{\sigma_{\= x }} < \frac{ \= x - \mu }{\sigma_{\= x }} < \frac{( \mu +2 ) - \mu }{\sigma_{\= x }} )[/tex]

Generally  [tex]\frac{ \= x - \mu }{\sigma_{\= x }} = Z (The \ standardized \ value \ of \ \= x )[/tex]

So

         [tex]P( \mu - 2 < \= x < \mu + 2) = P(\frac{( \mu - 2 ) - \mu }{\sigma_{\= x }} < Z< \frac{( \mu +2 ) - \mu }{\sigma_{\= x }} )[/tex]

         [tex]P( \mu - 2 < \= x < \mu + 2) = P(\frac{( -2 }{\sigma_{\= x }} < Z< \frac{ 2 }{\sigma_{\= x }} )[/tex]

substituting values

        [tex]P( \mu - 2 < \= x < \mu + 2) = P(\frac{-2 }{2} < Z< \frac{ 2 }{2} )[/tex]

        [tex]P( \mu - 2 < \= x < \mu + 2) = P(-1< Z< 1 )[/tex]

=>     [tex]P( \mu - 2 < \= x < \mu + 2) = P(Z < 1) - P(Z < -1)[/tex]

From the normal distribution table [tex]P(Z < 1 ) = 0.84134[/tex]

                                                          [tex]P(Z < - 1) = 0.15866[/tex]

=>  [tex]P( \mu - 2 < \= x < \mu + 2) = 0.84134 - 0.15866[/tex]

=>   [tex]P( \mu - 2 < \= x < \mu + 2) = 0.6826[/tex]

Q&A Education