Respuesta :

[tex]2\log_{2}{15}-\log_{2}{5}+\log_{2}{3}=\log_{2}{15^2}-\log_{2}{5}+\log_{2}{3}\\=\log_2{\frac{225\times3}{5}}=\log_2{135}[/tex]

Answer:

Option C. [tex]log_{2}135[/tex]

Step-by-step explanation:

The given expression is [tex]2log_{2}15-log_{2}5+log_{2}3[/tex]

We have to simplify this expression  

[tex]2log_{2}15-log_{2}5+log_{2}3[/tex]

= [tex]log_{2}(15^{2})-log_{2}5+log_{2}3[/tex] [Since [tex]log(a^{n})=n(loga)[/tex]]

= [tex]log_{2}225-log_{2}5+log_{2}3[/tex]

=[tex]log_{2}\frac{225}{5}+log_{2}3[/tex] [Since [tex]log\frac{a}{b}=loga-logb[/tex]]

= [tex]log_{2}\frac{225\times 3}{5}[/tex] [Since [tex]log(a\times b)=loga+logb[/tex]]

= [tex]log_{2}135[/tex]

Therefore, Option C. [tex]log_{2}135[/tex] is the answer.

Q&A Education