Respuesta :

 tan2x sin x = tan2x
tan2xsin x - tan 2x = 0
tan 2x(sinx - 1) = 0
 tan 2x = 0
 or sin x = 1
so one root is pi and other is 0
so correct option is A 
hope it helps

Answer: The answer is (A) [tex]0,~\dfrac{\pi}{2}.[/tex]

Step-by-step explanation:  The given trigonometric equation is

[tex]\tan 2x\sin x=\tan 2x.[/tex]

We are to solve the above equation in the interval [tex][0,2\pi).[/tex]

The solution is as follows:

[tex]\tan 2x\sin x=\tan 2x\\\\\Rightarrow \tan2x\sin x-\tan 2x=0\\\\\Rightarrow \tan 2x(\sin x-1)=0\\\\\Rightarrow \tan 2x=0,~~~~~~~\sin x-1=0\\\\\Rightarrow \tan 2x=\tan 0,~\Rightarrow \sin x=1\\\\\Rightarrow 2x=0,~~~~~~~\Rightarrow \sin x=\sin \dfrac{\pi}{2}\\\\\\\Rightarrow x=0,~~~~~~~~~~\Rightarrow x=\dfrac{\pi}{2}.[/tex]

Thus, the correct option is (A).

Q&A Education