Respuesta :
tan2x sin x = tan2x
tan2xsin x - tan 2x = 0
tan 2x(sinx - 1) = 0
tan 2x = 0
or sin x = 1
so one root is pi and other is 0
so correct option is A
hope it helps
tan2xsin x - tan 2x = 0
tan 2x(sinx - 1) = 0
tan 2x = 0
or sin x = 1
so one root is pi and other is 0
so correct option is A
hope it helps
Answer: The answer is (A) [tex]0,~\dfrac{\pi}{2}.[/tex]
Step-by-step explanation: The given trigonometric equation is
[tex]\tan 2x\sin x=\tan 2x.[/tex]
We are to solve the above equation in the interval [tex][0,2\pi).[/tex]
The solution is as follows:
[tex]\tan 2x\sin x=\tan 2x\\\\\Rightarrow \tan2x\sin x-\tan 2x=0\\\\\Rightarrow \tan 2x(\sin x-1)=0\\\\\Rightarrow \tan 2x=0,~~~~~~~\sin x-1=0\\\\\Rightarrow \tan 2x=\tan 0,~\Rightarrow \sin x=1\\\\\Rightarrow 2x=0,~~~~~~~\Rightarrow \sin x=\sin \dfrac{\pi}{2}\\\\\\\Rightarrow x=0,~~~~~~~~~~\Rightarrow x=\dfrac{\pi}{2}.[/tex]
Thus, the correct option is (A).