Answer:
a.69.3 N
b.34.7 N
Step-by-step explanation:
We are given that
Angle of inclination of the ramp=[tex]20^{\circ}[/tex]
Force F makes an angle with ramp=[tex]30^{\circ}[/tex]
The component of F parallel to the ramp =[tex]60 N[/tex]
a.We have to find the value of when its horizontal component is 60 N.
We know that
[tex]F_x=F cos 30^{\circ}[/tex]
[tex]F=\frac{F_x}{cos 30^{\circ}}[/tex]
[tex]F=\frac{60}{\frac{\sqrt3}{2}}[/tex]
[tex]F=40\sqrt3=69.3N[/tex]
b.We have to find [tex]F_y[/tex] perpendicular to the ramp.
[tex]F_y=Fsin 30^{\circ}[/tex]
[tex]F_y=69.3\times \frac{1}{2}=34.7 N[/tex]