Respuesta :

                  2x^2 + 5x + 2
3x^2 + 2   
6x^4 + 15x^3 + 10x^2 + 10x + 4
             -    6x^4                + 4x^2
                             15x^3 + 6x^2 + 10x + 4
             -               15x^3            + 10x
                                           6x^2 + 4
                                           6x^2 + 4

Therefore,
(6x^4 + 15x^3 + 10x^2 + 10x + 4) ÷ (3x^2 + 2) = 2x^2 + 5x + 2

Answer:  Option 'C' is correct.

Step-by-step explanation:

Since we have given that

[tex]\frac{\left(6x^4+15x^3+10x^2+10x+4\right)}{\left(3x^2+2\right)}[/tex]

Now, we will find the quotient by factoring the numerator:

[tex]\mathrm{Use\:the\:rational\:root\:theorem}\\a_0=4,\:\quad a_n=6\\\\\mathrm{The\:dividers\:of\:}a_0:\quad 1,\:2,\:4,\:\quad \\\mathrm{The\:dividers\:of\:}a_n:\quad 1,\:2,\:3,\:6\\\\\mathrm{Therefore,\:check\:the\:following\:rational\:numbers:\quad }\pm \frac{1,\:2,\:4}{1,\:2,\:3,\:6}\\\\-\frac{2}{1}\mathrm{\:is\:a\:root\:of\:the\:expression,\:so\:factor\:out\:}x+2\\\\=\left(x+2\right)\frac{6x^4+15x^3+10x^2+10x+4}{x+2}\\\\=\frac{6x^4+15x^3+10x^2+10x+4}{x+2}=6x^3+3x^2+4x+2\\\\[/tex]

Now, we will factor it again:

[tex]=\left(6x^3+3x^2\right)+\left(4x+2\right)\\\\=2\left(2x+1\right)+3x^2\left(2x+1\right)\\\\=\left(2x+1\right)\left(3x^2+2\right)[/tex]

At last we get our factorised form :

[tex]=\left(x+2\right)\left(2x+1\right)\left(3x^2+2\right)\\\\=\frac{\left(x+2\right)\left(2x+1\right)\left(3x^2+2\right)}{3x^2+2}\\\\=\left(x+2\right)\left(2x+1\right)\\\\=2x^2+5x+2[/tex]

Hence, Option 'C' is correct.

Q&A Education