Respuesta :

Answer:

33. [tex]f^{-1}(7) = 6[/tex]

34. [tex]f^{-1}(2) = 3[/tex]

35. [tex]f(-8) = -4[/tex]

36. [tex]f(-1) = -2[/tex]

37. [tex]f(1) = 0[/tex]

38. [tex]x = 7[/tex]

39. [tex]f^{-1}(0) = 1[/tex]

40. [tex]f^{-1}(3) = 7[/tex]

Step-by-step explanation:

The inverse function [tex]f^{-1}(x)[/tex] points back from f(x) to x, that is, if we have [tex]f(x) = y[/tex], then we have that [tex]f^{-1}(y) = x[/tex], and if we have [tex]f^{-1}(y) = x[/tex], then we have [tex]f(x) = y[/tex]

So we have that:

33.

[tex]f(6) = 7[/tex]

[tex]f^{-1}(7) = 6[/tex]

34.

[tex]f(3) = 2[/tex]

[tex]f^{-1}(2) = 3[/tex]

35.

[tex]f^{-1}(-4) = -8[/tex]

[tex]f(-8) = -4[/tex]

36.

[tex]f^{-1}(-2) = -1[/tex]

[tex]f(-1) = -2[/tex]

In the exercises from 37 to 40, we do the same above, but now using the values in the table given. So we have:

37.

if [tex]x = 1[/tex], [tex]f(1) = 0[/tex]

38.

if [tex]f(x) = 3[/tex], [tex]x = 7[/tex]

39.

We just need to find where f(x) = 0. If [tex]f(1) = 0[/tex], [tex]f^{-1}(0) = 1[/tex]

40.

We just need to find the value of f(7). If [tex]f(7) = 3[/tex], [tex]f^{-1}(3) = 7[/tex]

Q&A Education