Respuesta :

Answer:

[tex]x^{\frac{5}{6}}/x^{\frac{1}{6}} = \sqrt[3]{x^2}[/tex]

Step-by-step explanation:

Given

[tex]x^{\frac{5}{6}}/x^{\frac{1}{6}}[/tex]

Required

Rewrite in simplest radical form

Using laws of indices:

[tex]a^m/a^n = a^{m-n}[/tex]

This implies that

[tex]x^{\frac{5}{6}}/x^{\frac{1}{6}} = x^{\frac{5}{6} - \frac{1}{6}}[/tex]

Solve Exponents

[tex]x^{\frac{5}{6}}/x^{\frac{1}{6}} = x^{\frac{5 - 1}{6} }[/tex]

[tex]x^{\frac{5}{6}}/x^{\frac{1}{6}} = x^{\frac{4}{6} }[/tex]

Simplify exponent to lowest fraction

[tex]x^{\frac{5}{6}}/x^{\frac{1}{6}} = x^{\frac{2}{3} }[/tex]

Using laws of indices:

[tex]a^{\frac{m}{n}} = \sqrt[n]{a^m}[/tex]

This implies that

[tex]x^{\frac{5}{6}}/x^{\frac{1}{6}} = \sqrt[3]{x^2}[/tex]

This is as far as the expression can be simplified

Q&A Education