Respuesta :

Answer:

[tex]\frac{-3x^2-7x-4}{x^3-2x^2-9x+18}[/tex]

Step-by-step explanation:

[tex]\frac{2}{x^2-9}-\frac{3x}{x^2-5x+6}[/tex]

Factor x²-9 and x²-5x+6.

[tex]\frac{2}{\left(x+3\right)\left(x-3\right)}-\frac{3x}{\left(x-2\right)\left(x-3\right)}[/tex]

Least common multiple of (x+3), (x-3), (x-2), and (x-3) is (x+3), (x-3), and (x-2).

Adjust the fractions based on LCM.

[tex]\frac{2\left(x-2\right)}{\left(x+3\right)\left(x-3\right)\left(x-2\right)}-\frac{3x\left(x+3\right)}{\left(x-2\right)\left(x-3\right)\left(x+3\right)}[/tex]

Subtract the fractions since denominators are equal.

[tex]\frac{2\left(x-2\right)-3x\left(x+3\right)}{\left(x+3\right)\left(x-3\right)\left(x-2\right)}[/tex]

Expand.

[tex]\frac{-3x^2-7x-4}{x^3-2x^2-9x+18}[/tex]

The fraction can be in factored form.

[tex]\frac{-\left(x+1\right)\left(3x+4\right)}{\left(x-2\right)\left(x+3\right)\left(x-3\right)}[/tex]

Answer:

[tex]-\frac{(x+1)(3x+4)}{(x+3)(x-2)(x-3)}[/tex]

Step-by-step explanation:

STEP 1: Simplify each term.

[tex]\frac{2}{(x+3)(x-3)}-\frac{3x}{(x-3)(x-2)}[/tex]

[tex]\frac{2}{(x+3)(x-3)}*\frac{x-2}{x-2} -\frac{3x}{(x-3)(x-2)}[/tex]

[tex]\frac{2}{(x+3)(x-3)}*\frac{x-2}{x-2} -\frac{3x}{(x-3)(x-2)}*\frac{x+3}{x+3}[/tex]

STEP 2: Write each expression with a common denominator of (x+3)(x−3)(x−2), by multiplying each by an appropriate factor of 1.

[tex]\frac{2(x-2)-3x(x+3)}{(x+3)(x-2)(x-3)}[/tex]

STEP 3: Simplify the numerator.

[tex]\frac{(-x-1)(3x+4)}{(x+3)(x-2)(x-3)}[/tex]

STEP 4: Simplify with factoring out.

[tex]-\frac{(x+1)(3x+4)}{(x+3)(x-2)(x-3)}[/tex]

Q&A Education