Respuesta :

I hope this helps you




3x²-11x-4
_________

(x-4)


(3x+1)(x-4)
_________
(x-4)



3x+1



Answer:

The answer is [tex](3x+1)[/tex]

Step-by-step explanation:

we have

[tex]\frac{3x^{2}-11x-4}{x-4}[/tex]

Convert the numerator in factored form

[tex]3x^{2}-11x-4=0[/tex]

Group terms that contain the same variable, and move the constant to the opposite side of the equation

[tex]3x^{2}-11x=4[/tex]

Factor the leading coefficient

[tex]3(x^{2}-11x/3)=4[/tex]

Complete the square. Remember to balance the equation by adding the same constants to each side.

[tex]3(x^{2}-11x/3+(121/36))=4+(121/12)[/tex]

[tex]3(x^{2}-11x/3+(121/36))=(169/12)[/tex]

[tex](x^{2}-11x/3+(121/36))=(169/36)[/tex]

Rewrite as perfect squares

[tex](x-(11/6))^{2}=(169/36)[/tex]

Square root both sides

[tex]x-\frac{11}{6}=(+/-)\frac{13}{6}[/tex]

[tex]x=\frac{11}{6}(+/-)\frac{13}{6}[/tex]

[tex]x=\frac{11}{6}+\frac{13}{6}=4[/tex]

[tex]x=\frac{11}{6}-\frac{13}{6}=-\frac{1}{3}[/tex]

therefore

[tex]3x^{2}-11x-4=3(x-4)(x+\frac{1}{3})=(x-4)(3x+1)[/tex]

Substitute

[tex]\frac{3x^{2}-11x-4}{x-4}=\frac{(x-4)(3x+1)}{x-4}=(3x+1)[/tex]

Q&A Education