Respuesta :

Answer:

b. C(10, 7)

Step-by-step explanation:

C(10, 3) = 10! / (3!)(10 -3)!

= 10!/3! 7!

C(10, 3) = 120

C(10, 7) = 10!/7!(10 - 7)!

= 10!/7!3!

C(10, 7)  = 120

Therefore, the answer is b. C(10, 7)

Hope this will helpful.

Thank you.

Answer:

C(10,7)

Step-by-step explanation:

We are given that C(10, 3)

We have to find the which is equal to C(10,3) in given options.

C(10,3)=[tex]\frac{10!}{3!(10-3)!}[/tex]

By using combination formula: [tex]nC_r=\frac{n!}{r!(n-r)!}[/tex]

[tex]C(10,3)=\frac{10!}{3!7!}[/tex]

a.C(3,10)

We have n=3, r=10

C(3,10)=[tex]\frac{3!}{10!(3-10)!}=\frac{3!}{10!(-7)!}[/tex]

It is not possible because  n factorial is the product of n natural numbers.

b.C(10,7)

[tex]C(10,7)=\frac{10!}{7!(10-7)!}=\frac{10!}{7!3!}[/tex]

Therefore, C(10,7)=C(10,3)

c.P(10,3)

[tex]P(n,r)=nP_r=\frac{n!(n-r)!}[/tex]

[tex]P(10,3)=\frac{10!}{(10-3)!}=\frac{10!}{7!}[/tex]

Therefore, C(10,3)[tex]\neq P(10,3)[/tex]

Answer:C(10,7)

Q&A Education