Respuesta :

Answer:

[tex]\int\limits {5^x} \, dx = \frac{5^x}{ln\ x} + c[/tex]

Step-by-step explanation:

Note that the integral of [tex]5^x[/tex] is not [tex]\frac{1}{6}x^6 + c[/tex]

The solution is as follows:

Given

[tex]5^x[/tex]

Required

Integrate

Represent the given expression using integral notation

[tex]\int\limits {5^x} \, dx[/tex]

This question can't be solved directly;

We'll make use of exponential rules which states;

[tex]\int\limits {a^x} \, dx = \frac{a^x}{ln\ x} + c[/tex]

By comparing [tex]\int\limits {5^x} \, dx[/tex] with [tex]\int\limits {a^x} \, dx[/tex];

we can substitute 5 for a;

Hence, the expression [tex]\int\limits {a^x} \, dx = \frac{a^x}{ln\ x} + c[/tex] becomes

[tex]\int\limits {5^x} \, dx = \frac{5^x}{ln\ x} + c[/tex]

-------------------------------------------------------------------------------------

However, the integral of [tex]x^5[/tex] is [tex]\frac{1}{6}x^6 + c[/tex]

This is shown below:

Given that [tex]x^5[/tex]

Applying power rule;

Power rule states that

[tex]\int\limits{x^n}\ dx = \frac{x^{n+1}}{n+1} + c[/tex]

In this case ([tex]x^5[/tex]), n = 5;

So, [tex]\int\limits{x^n}\ dx= \frac{x^{n+1}}{n+1} + c[/tex]

becomes

[tex]\int\limits{x^5}\ dx = \frac{x^{5+1}}{5+1} + c[/tex]

[tex]\int\limits{x^5}\ dx = \frac{x^{6}}{6} + c[/tex]

[tex]\int\limits{x^5}\ dx= \frac{x^{6}}{6} + c[/tex]

Q&A Education