Respuesta :
Answer:
AB=7.21 unit
BC=6 unit
CD=7.21 unit
AD= 6 unit
AC=4 unit
BD=4 unit
Step-by-step explanation:
Coordinates of A =(-2,3)
Coordinates of B = (2,-3)
Coordinates of C = (2,3)
Coordinates of D =(-2,-3)
Distance formula :[tex]d = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
[tex]A=(x_1,y_1)=(-2,3)\\B=(x_2,y_2)=(2,-3)\\AB = \sqrt{(2+2)^2+(-3-3)^2}[/tex]
AB=7.21 unit
[tex]B=(x_1,y_1)=(2,-3)\\C=(x_2,y_2)=(2,3)\\BC=\sqrt{(2-2)^2+(3+3)^2}[/tex]
BC=6
[tex]C=(x_1,y_1)=(2,3)\\D=(x_2,y_2)=(-2,-3)\\CD=\sqrt{(-2-2)^2+(-3-3)^2}[/tex]
CD=7.21
[tex]A=(x_1,y_1)=(-2,3)\\D=(x_2,y_2)=(-2,-3)\\AD=\sqrt{(-2+2)^2+(-3-3)^2}[/tex]
AD=6
[tex]A=(x_1,y_1)=(-2,3)\\C=(x_2,y_2)=(2,3)[/tex]
[tex]AC=\sqrt{(2+2)^2+(3-3)^2}[/tex]
AC=4
[tex]B=(x_1,y_1)=(2,-3)\\D=(x_2,y_2)=(-2,-3)[/tex]
BD=[tex]\sqrt{(-2-2)^2+(-3+3)^2}[/tex]
BD=4