if -5 is a root of the quadratic equation 2x2+px-15=0 and the quadratic equation p(x^2+x)+k=0 has equal roots. find the value of k

Respuesta :

Answer:

[tex]$k=\frac{7}{4} $[/tex]

Step-by-step explanation:

[tex]2x^2+px-15=0[/tex]

Once [tex]x=-5[/tex]

[tex]2(-5)^2+p(-5)-15=0[/tex]

[tex]2(25)-5p-15=0[/tex]

[tex]50-5p-15=0[/tex]

[tex]35-5p=0[/tex]

[tex]p=7[/tex]

Quadratic Equation:

[tex]2x^2+7x-15=0[/tex]

[tex]p(x^2+x)+k=0 \Rightarrow 7(x^2+x)+k=0 \Rightarrow 7x^2+7x+k=0[/tex]

[tex]\Delta=b^2-4ac[/tex]

[tex]\Delta=7^2-4(7)k[/tex]

[tex]\Delta=49-28k[/tex]

The quadratic equation having two equal roots means that the discriminant is equal to zero.

[tex]0=49-28k[/tex]

[tex]-49=-28k[/tex]

[tex]$k=\frac{49}{28} $[/tex]

[tex]$k=\frac{7}{4} $[/tex]

Q&A Education