contestada

In the figure, ABC is a quarter circle and CDEF is a square.
(a) The length of DF is 38 cm. Find the area of the square CDEF.
(b) Find the area of the shaded parts. Give your answer correct to
2 decimal places.​

In the figure ABC is a quarter circle and CDEF is a squarea The length of DF is 38 cm Find the area of the square CDEFb Find the area of the shaded parts Give y class=

Respuesta :

Answer:

a). 722 cm²

b). 412.11 cm²

Step-by-step explanation:

ABC is a quarter circle with radius CE,

Area of a quarter circle = [tex]\frac{1}{4}\pi r^{2}[/tex]

Since CDEF is a square, diagonals CE and FD will be equal.

CE ≅ FD ≅ 38cm

(a). Measure of a side of the square CDEF = [tex]\sqrt{\frac{1}{2} (\text {Diagonal})^2}[/tex]

           Side = [tex]\sqrt{\frac{(38)^2}{2} }[/tex]

                    = 26.87

     Area of the square CDEF = (Side)²

                                                = (26.87)²

                                                = 722 cm²

b). Area of the shaded part = Area of the quarter circle - Area of the square

    Area of the quarter circle = [tex]\frac{1}{4}\pi (38)^{2}[/tex]

                                               = 1134.11495 cm²

    Area of the shaded area = 1134.11495 - 722

                                              = 412.11495 cm²

                                              ≈ 412.11 cm²

Q&A Education