Respuesta :

Answer:

D

Step-by-step explanation:

Recall that:

[tex]\displaystyle \cos\theta = \frac{1}{\sec\theta}[/tex]

Since we are given that secθ = -7.3, then by definition:

[tex]\displaystyle \cos\theta = \frac{1}{(-7.3)}\approx -0.14[/tex]

Next, recall that:

[tex]\displaystyle \sin\left (\frac{\pi}{2} - \theta \right) = \cos\theta[/tex]

This is the co-function identity.

And since sine is an odd function:

[tex]\sin u = -\sin (-u)[/tex]

In other words:

[tex]\displaystyle \sin\left (\frac{\pi}{2} - \theta \right) = -\sin\left(\theta - \frac{\pi}{2}\right)= \cos\theta[/tex]

Therefore:

[tex]\displaystyle \sin\left(\theta - \frac{\pi}{2}\right) = -\cos\theta = -(-0.14) = 0.14[/tex]

Hence, our answer is D.

Q&A Education