kcasseus
contestada

Calculate the root-mean-square velocity for a hydrogen molecule at
-15.0 °C. The universal gas constant, R=8.314 J/mol.K.

Respuesta :

Answer:

56.5 m/s

Explanation:

Step 1: Convert the temperature to Kelvin

We will use the following expression.

K = °C + 273.15

K = -15.0°C + 273.15 = 258.2 K

Step 2: Calculate the root-mean-square velocity

The root-mean-square velocity is the square root of the average square velocity. We can calculate it using the following expression.

[tex]v_{rms} = \sqrt{\frac{3RT}{M} }[/tex]

where,

  • R: ideal gas constant
  • T: absolute temperature
  • M: molar mass of the gas

[tex]v_{rms} = \sqrt{\frac{3 \times \frac{8.314J}{mol.K} \times 258.2K }{2.02g/mol} } = 56.5m/s[/tex]

The root-mean-square velocity for a hydrogen molecule at the given temperature is 1,793.74 m/s.

The given parameters;

  • temperature of the hydrogen, t = -15 ⁰C
  • molecular mass of hydrogen, m = 2 g/mol
  • universal gas constant, R = 8.314 J/mol.K

The root-mean-square velocity for a hydrogen molecule is calculated as follows;

[tex]v_{rms} = \sqrt{\frac{3RT}{m} } \\\\[/tex]

where;

  • T is the temperature of the hydrogen = -15 + 273 = 258 K
  • m is the mass of the hydrogen = 2 x 10⁻³ kg/mol

[tex]v_{rms} = \sqrt{\frac{3 \times 8.314 \times (-15+273)}{2\times 10^{-3}} } \\\\v_{rms} = 1,793.74 \ m/s[/tex]

Thus, the root-mean-square velocity for a hydrogen molecule at the given temperature is 1,793.74 m/s.

Learn more here:https://brainly.com/question/25117655

Q&A Education