Answer:
95% of confidence intervals are
(31.5215 , 53.4785)
Step-by-step explanation:
Explanation:-
Given sample size 'n' =24
Mean of the sample x⁻ = 42.5
Standard deviation of the sample 'S' = 26
95% of confidence intervals are determined by
[tex](x^{-} - t_{0.05} \frac{S}{\sqrt{n} } , x^{-} + t_{0.05} \frac{S}{\sqrt{n} })[/tex]
Degrees of freedom
ν =n-1 = 24-1 =23
[tex]t_{0.05} = 2.0686[/tex]
95% of confidence intervals are
[tex](42.5 - 2.0686 \frac{26}{\sqrt{24} } , 42.5+ 2.0686 \frac{26}{\sqrt{24} })[/tex]
( 42.5 -10.9785 ,42.5 +10.9785)
(31.5215 , 53.4785)