Create a bucket by rotating around the y axis the curve y=5 ln(x-2) from y=0 to y=4. If this bucket contains a liquid with density 760 kg/m3 filled to a height of 3 meters, find the work required to pump the liquid out of this bucket (over the top edge). Use 9.8 m/s2 for gravity.

Respuesta :

Answer:

The work will be "1909212.015 J". The further explanation is given below.

Step-by-step explanation:

The given values are:

Liquid's density

= 760 kg/m³

Height

= 3 meters

Gravity

g = 3.8 m/s²

Value of y is:

y = 5 log (x-2)

y = 0

y = 4

As we know,

⇒  [tex]\Delta V=\pi r^2 \Delta y[/tex]

⇒  [tex]y =5log(x-2)[/tex]

⇒  [tex]\frac{y}{5} =log (x-2)[/tex]

⇒  [tex]e^{\frac{y}{5}}=(x-2)[/tex]

⇒  [tex]x=e^{\frac{y}{5}}+2[/tex]

Now,

[tex]\Delta F=ma[/tex]

      [tex]=760 \pi (e^{\frac{y}{5}}+2)^2(9.8)\Delta y[/tex]

So that,

⇒  [tex]\Delta W = \Delta F.distance[/tex]

            [tex]=\Delta F(4-y)[/tex]

The required work will be:

⇒  [tex]W=760\times 9.8 \pi \int_{3}^{0}(e^{\frac{y}{5}}+2)^2 (\Delta-y)dy[/tex]

         [tex]=760\times 9.8 \pi[{-20(y-9)^{e^{\frac{y}{5}}}-2(y-8)y}][/tex]

         [tex]=760\times 9.8 \pi[81.455][/tex]

         [tex]=1909212.015 \ J[/tex]

Q&A Education