Respuesta :

sin t = 6/7
cot t = cos t / sin t
cos t = √(1 - (6/7)²) = √( 1 - 36/49) = √(13/49) = √13/7
cot t = √13/7  /  6/7 = √13 / 6

Answer:

[tex]cot\theta=\frac{\sqrt{13}}{6}[/tex]

Step-by-step explanation:

Step 1

Find the value of the [tex]cos\theta[/tex]

we have that

[tex]sin\theta=\frac{6}{7}[/tex]

Remember that

[tex]sin^{2} \theta+cos^{2} \theta=1[/tex]

Substitute the value of [tex]sin\theta[/tex]

[tex]\frac{6}{7}^{2}+cos^{2} \theta=1[/tex]

[tex]\frac{36}{49}+cos^{2} \theta=1[/tex]

[tex]cos^{2} \theta=1-\frac{36}{49}[/tex]

[tex]cos^{2} \theta=\frac{13}{49}[/tex]

square root both sides

[tex]cos \theta=\frac{\sqrt{13}}{7}[/tex]

Step 2

Find the value of [tex]cot\theta[/tex]

we know that

[tex]cot\theta=\frac{cos\theta}{sin\theta}[/tex]

substitute the values

[tex]cot\theta=\frac{\frac{\sqrt{13}}{7}}{\frac{6}{7}}=\frac{\sqrt{13}}{6}[/tex]

Q&A Education