Find the area under the curve y = 17/x3 from x = 1 to x = t. Incorrect: Your answer is incorrect. Evaluate the area under the curve for t = 10, t = 100, and t = 1000. t = 10 t = 100 t = 1000 Find the total area under this curve for x ≥ 1.

Respuesta :

Answer:

[tex]A=\frac{17}{4}[1-t^{-4}][/tex]

A1 = 4.249

A2 = 4.249

A3 = 4.25

Step-by-step explanation:

You have the following function:

[tex]y(x)=\frac{17}{x^3}[/tex]

To find the area under the curve, between x=1 and x=t, you integrate y(x):

[tex]A=\int y(x)dx=\int_1^t\frac{17}{x^3}dx=17\int_1^tx^{-3}dx\\\\A=17(\frac{x^{-4}}{-4})|_1^t=\frac{17}{4}[1-t^{-4}][/tex]

For t = 10

[tex]A_1=\frac{17}{4}[1-(10)^{-4}]=4.249[/tex]

t = 100

[tex]A_2=\frac{17}{4}[1-(100)^{-4}]=4.249[/tex]

t = 1000

[tex]A_2=\frac{17}{4}[1-(1000)^{-4}]=4.25[/tex]

Q&A Education